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We study the critical behavior of certain two-parameter families of correlated 
percolation models related to the Ising model on the triangular and square lat- 
tices, respectively. These percolation models can be considered as interpolating 
between the percolation model given by the + and - clusters and the Fortuin- 
Kasteleyn correlated percolation model associated to the Ising model. We find 
numerically on both lattices a two-dimensional critical region in which the 
expected cluster size diverges, yet there is no percolation. 
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1. GENERAL D ISCUSSION OF THE PROBLEM 

Consider the standard Ising model on a simple cubic lattice in D dimen- 
sions. It is well known that for sufficiently low temperature in D/> 2 the 
system exhibits long-range order (1.r.o.). It is a natural question to ask 
whether such a phase continues to exist if one dilutes bonds randomly with 
probability p. Georgii (1~ provided the answer: if p < Pc (the critical bond 
density below which a percolating cluster of occupied bonds still exists), 
there is an inverse temperature /?c(P) such that for /~</3c(p), 1.r.o. still 
persists. Georgii's proof, which is based on the use of convergent low- 
temperature expansions, suggests straightforward generalizations to some 
percolation problems, Thus, one could prove, for instance, that if one 
randomly dilutes bonds from a square lattice, then on such a lattice 
Bernoulli site percolation can still occur, provided the bond dilution prob- 
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ability p satisfies p < Pc (i.e., the lattice does not fall apart). In the previous 
statement, site percolation is taken to mean the following: consider the set 
S of sites belonging to the infinite cluster of occupied (undiluted) bonds. 
Randomly with probability q and 1 -  q, respectively, assign to these sites 
the values 1 or 0. Then percolation means that for q sufficiently large any 
point of S has a nonzero probability to be connected to infinity via a set 
of adjacent l's. 

It is well known that in percolation problems an interesting quantity 
is the "mean cluster size" (the expected size of the cluster attached to the 
origin). The latter can be infinite even though there is no percolation. 
A trivial example for this is provided by Bernoulli site percolation at 
p = p ~ .  One can also envisage situations--see examples given below-- 
where, on the original undiluted lattice, one knows that the mean cluster 
size is infinite, yet there is no percolation; by analogy with the question 
discussed in the previous paragraph, one may ask now if this property 
divergence of the mean cluster size without percolation--is stable against a 
sufficiently weak random bond dilution. 

In our studies of the phase structure of 2D O(N) spin models, (2~ 
which are based on representating these models as correlated percolation 
models by generalizing the Fortuin-Kasteleyn representation of the Ising 
model, (5~ we encountered a more subtle stability problem. First one forms 
the so-called hemispherical (H) clusters, which are constructed as follows: 
a bond (xy)  is occupied if and only if the spins S(x) and S(y) point in 
the same hemisphere, i.e., their Nth components have equal sign (this is 
an obvious generalization of the + and - clusters of the Ising model, 
considered as bond clusters). The Fortuin-Kasteleyn (FK) clusters are then 
obtained from the H clusters by deleting bonds with a certain probability 
that goes to zero as the temperature goes to zero. Since one is interested, 
for instance, in proving that the mean size of the FK clusters diverges at 
low temperature, a natural strategy is to first show the divergence of the 
hemispherical clusters and then show that this property is stable under 
small dilutions. (In ref. 3 this problem was avoided by introducing a 
modification of the models, called "cut" or "constrained" models there). 

We conjecture that a general stability principle holds that can be 
stated as follows: 

Conjecture I. If in a translation-invariant percolation model the 
mean size of the cluster attached to the origin (in the following simply 
called "mean cluster size") diverges, then, except at nongeneric critical 
points, the system will show stability against dilution in the following 
sense: there is a number Pc > 0 such that after deleting sites or bonds from 
the model with probability p ' <  Pc, the mean cluster size still diverges. 



Critical Behavior in Correlated Percolation 57 

In the remainder of this paper we will limit ourselves to the case of 
two dimensions. In this case Conjecture 1 is implied by the following 
stronger statement: 

Conjecture I'.  Consider a translation-invariant bond percolation 
model parametrized by some variable p. Eliminate bonds independently 
with probability p', giving rise to a 2-parameter family of percolation 
models parametrized by (p, p'). Let P(L, p, p') be the probability that a 
box of size L is surrounded by a circuit of occupied bonds and P(vo, p, p') 
its limit as L -~ ~ .  Then, except possibly for isolated values of p, these two 
probabilities are continuous functions of p' at p ' =  0. 

The relation between Conjectures 1 and 1' is the following: assume 
that we are in a pure phase, such that the a-algebra of translation-invariant 
events at infinity is trivial. Then P ( ~ ,  p, p'), being the probability of a tail 
event, will be 0 or 1. Conjecture 1' then says that if P ( ~ ,  p, 0 )=  1, then 
also P(ov, p, p ' ) =  1 for p' sufficiently small, except for isolated values ofp. 
The property P(ov, p, p ' ) =  1 says that any box is surrounded by a circuit 
of occupied bonds. By using the Borel-Cantelli lemma it is easy to see (as 
in the proof of Proposition 1 of ref. 6) that this implies divergence of the 
mean size of the cluster of occupied bonds attached to the origin, i.e., 
Conjecture 1. 

The subtlety of the question raised by our stability principle lies in the 
fact that it is supposed to apply also to clusters whose mean size diverges, 
yet which are not percolating. One might think that such clusters are only 
marginally divergent and the smallest additional dilution would render 
their mean size finite. Our principle says that this will not be the case, 
except possibly at nongeneric critical points. 

To put our conjecture into perspective, let us recall the following 
rigorously established facts, which all can be interpreted as expressing some 
kind of stability against dilution: 

(a) Georgii, (1~ as mentioned in the beginning, proved that on a 
randomly bond-diluted lattice the Ising model possesses a phase with 
long-range order (1.r.o.) provided the dilution probability p < Pc. 

(b) Russo (6) proved that for independent percolation the probability 
that the origin belongs to the percolating cluster is a smooth function of 
the bond occupation probability 1 - p  for all p < Pc. 

(c) De Masi et al. ~7) proved that on a lattice on which bonds have 
been diluted randomly with probability p, the Laplacian retains its 
continuous spectrum for p < Pc. 

Let us look at some examples where we have stability of clusters that 
have divergent mean size, yet do not percolate: 
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Example I. Consider the 2D Ising model at inverse temperature 
/3 =/3c and its hemispherical clusters (+  and - clusters regarded as bond 
clusters) as well as their bond dilution with probability p'. The hemispheri- 
cal clusters do not percolate at/3c .(8) The Fortuin-Kasteleyn clusters (5) are 
obtained by diluting with p ' = e x p ( - 2 / 3 )  and their mean cluster size is 
equal to the susceptibility, (5~ hence divergent. So Conjecture 1 holds. 

Example 2. Consider the 2D Ising model at inverse temperature 
/3 >/3c with + b.c. and the clusters of + spins, as well as their bond 
dilution with probability p'. It is known that P(L,/3, 0 ) =  1 for all L. (8) 
The Fortuin-Kasteleyn clusters (5) are obtained by putting p ' =  exp(-2/3); 
because there is 1.r.o. and the connectivity function is equal to the untrun- 
cated 2-point function, (5) the occupied bonds percolate, the unoccupied 
bonds form islands, and P(L,/3, p ' ) =  1 for p'...<exp(-2/3) and all L, i.e., 
Conjecture 1' holds. 

Example 3. Consider the 2D 0(2) model at large /3. It has been 
rigorously established that the susceptibility diverges for sufficiently large 
/3.o) As shown in refs. 2 and 3, one can associate to this model an Ising 
model which will also have a divergent susceptibility at large/3; this implies 
the divergence of the mean size of the Fortuin-Kasteleyn clusters, which 
can be considered as dilutions of the "hemispherical clusters. ''(2~) So a 
variant of Conjecture 1 holds in this example (the dilution is not quite of 
the form assumed in the conjecture). 

We find our principle extremely plausible and believe that arguments 
similar to Russo's could lead to a rigorous proof. In this paper, however, 
we present only the results of a numerical investigation of the bond-diluted 
+ or - clusters of the Ising model on the triangular (T) and square (S) 
lattices. The model is defined as follows: we first consider the + or - 
clusters regarded as bond clusters (=hemispherical clusters). We then 
delete bonds independently with probability p'. We thus obtain models 
depending on two parameters: the inverse temperature/3 of the Ising model 
and p'. We sometimes use instead of/3 the probability p =exp(-2 /3)  to 
parametrize the models. 

The models are described in terms of the following joint probability 
measure for the spins ~x (taking values + 1 or - 1 )  and bond occupation 
numbers nxy taking values 0 or 1: 

P(nxy, ~x) =Z-1 1~ {[nxy(1 --P')+ (1 -nxy)p'] 6~x~y 
( x y )  

+ (1--nxy)p(1--6~xOy)} (1) 
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This measure defines bond clusters in the usual way; we define their 
size as the number of lattice sites contained in them. Putting p = p', one 
obtains the probability measure related to the Fortuin-Kasteleyn (FK) 
representation ~5) of the Ising model dubbed Fortuin-Kasteleyn-Swendsen- 
Wang measure in ref. 10. It is easy to sum over the spins in that case to 
obtain the well-known FK measure for correlated percolation associated 
with the lsing model 

P(nxy)=Z 12Nc ]~I {nxy(1--p)+(1--nxy)p} (2) 
<xy> 

where N c denotes the number of clusters (connected components). On the 
other hand, putting p ' =  0 in (1), one obtains the bond percolation model 
induced by the + and - clusters (H clusters) of the Ising model. 

In general we cannot carry out the sum over the spins explicitly, 
but it is possible to make a general statement based on the F K G  
inequalities (11 ): 

Proposition 1. The probability measure given by (1) is increasing 
in the F K G  sense in 1 -  p'. 

This implies in particular the intuitively obvious fact that the expected 
cluster size is increasing with decreasing dilution probability p'. The 
following conjecture is also intuitively obvious and seen in every numerical 
experiment (although we do not have a proof): 

Conjecture 2. The mean duster  size is increasing with 1 -  p, i.e., 
with ft. 

If we denote by P'c(P) the infimum of the values of p'  such that at fixed 
p the expected size of the cluster of occupied bonds (i.e., bonds ( xy )  with 
nxy = 1) is finite, we can thus make the following general statements: 

1. The mean cluster size is monotonically decreasing in p'. 

2. P'c(P) is a monotonically nondecreasing function of p. 

3. p'c(p)>~p at p = e x p ( - 2 / / c ) ,  where Pc is the critical inverse 
temperature of the Ising model on the lattice considered. 

4. p'c(p)(O) = 1 -Pc .B . . . . .  Hi, where the latter is the critical probability 
for Bernoulli percolation on the lattice considered. 

Statement 1 follows from Proposition 1, statement 2 from Conjecture 
1, and statement 3 from the fact that at the critical point of the Ising model 
the mean size of the FK cluster diverges (it is equal to the susceptibility) 
and there is no percolation of the hemispherical (i.e., + or - )  dusters (see 
Example 1 above). 
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In the following we will present numerical data that give a rough idea 
of the shape of the critical curve P'c(P). In particular, we find that both on 
the T and S lattices p '~ (p )>0  for p in a nontrivial interval exp( -2 f l c )<  
p < p . ,  where PH is the infimum of the values of p such that the expected 
size of the "hemispherical clusters" (i.e., the + and - clusters) is finite. 
This implies that for both lattices there is a 2-dimensional "critical region" 
given by exp( -2 f l c )<  p < pu and p ' <  P'c(P) in which there is no percola- 
tion, but the expected size of the clusters diverges, and confirms our 
stability principle (Conjecture 1). 

2. N U M E R I C A L  R E S U L T S  

2.1. T r iangu lar  Latt ice 

The triangular lattice is self-matching in the terminology of ref. 12. 
This means that for the site problem there is no difference between 
ordinary and *-percolation. Therefore, for p > exp(-2flc) (i.e., fl < tic), by 
symmetry, there is neither percolation of + sites nor *-percolation of - 
sites. By the result of Russo already quoted (Proposition 1 in ref. 6), this 
implies divergence of the expected size of the + and - site clusters which 
is equivalent to divergence of the expected size of the "hemispherical" (H) 
clusters of bonds defined above. In other words, on the T lattice, p .  ~< 0 
(presumably it is =0). 

To determine P'c(P) for p>exp ( -2 f l c ) ,  i.e., in the high-temperature 
region, we measured the mean cluster size for of p' = 1/x f3, 0.5, 0.4, and 0.3 
for a sequence of values of fl chosen such that the mean cluster size ( C )  
remains finite as the size L 2 of the lattice goes to ~ .  In practice it turned 
out that ( C )  reached its infinite-volume limit (within numerical accuracy) 
once L 2 was 20 times ( C ) .  To generate the spin configurations, we used 
Wolff's single cluster variant r of the Swendsen-Wang algorithm~14); since 
this method relies on the construction of the FK clusters, it is a trivial 
matter to construct also the clusters determined by the measure given in 
(1) and measure their size. 

The resulting data were fitted to a power law 

p' = a [ f l -  flc(p') ] - ~ (3) 

[flc(P') is determned by the fit; its meaning is that it determines the value 
Pc( i f )  at which the expected cluster size diverges for given p'.] 

On the T lattice 

tic = �88 in 3 = 0.27465 (4) 
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(see ref. 15, p. 87), so that exp ( -2 /3c )=  1/xf3=0.57735. This is the first 
value chosen for p'  and the purpose is to test the method, because at this 
P', /3c(P')=/3c. Our data show that we get a quite accurate determination 
of/3c(P'). We obtained 

flc=0.2722(4), 7=1.316 (5) 

The exact value is quite close to the best fit value, but not within the 
quoted statistical error. The reason is the unavoidable systematic error 
produced by fitting with a pure power law. For the other values of p' we 
obtained 

/3c(0.5) = 0.2630(6), 

/3~(0.4) = 0.2524(14), 

/3c(0.3) = 0.2402(26), 

Put differently, we have obtained 

p'c(0.5910 -4- 0.0007) = 0.5 

p'c(0.6036 _+ 0.0017) = 0.4 

p'c(0.6185 _+ 0.0032) = 0.3 

7 = 1.398 (6) 

7 = 1.484 (7) 

7=1.518 (8) 

(6') 

(7') 

(8') 

(The actual measured values of {C> are given in Table I.) 
It is seen clearly that/3c(P') is increasing significantly (far beyond the 

statistical and systematic error) with p'. 
To get a better idea of the shape of the critical curve p'(p) ,  we also 

measured the mean cluster size for the three values/3 = 0, /~ =/3c. = 0.2747, 
and/3 = 0.29, varying p', and fitted the data with a power law 

< C> = b[p '  - p;(/3)] -7 (9) 

We obtained 

p'(O) = -0.028(5), 7 = 2.878 (10) 

p'(0.2747) = 0.575(7), 7=3.024 (11) 

p'(0.29) = 0.610(4), 7 = 2.657 (12) 

(The actual measured values of (C>  are given in Table II.) 
Again we see a systematic error showing up in the slightly negative 

value obtained for/3 = 0. The true value is probably 0, since at/? = 0 we are 
really studying Bernoulli site percolation with probability 0.5, which is the 
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Table I. Triangular Lattice, Cluster Size vs. 13 for p '=0 .3 ,  0.4, 0.5, 
1/,~f'3 = 0.57735 

p '=0.3 

,8 O. 0.05 0.10 0,15 0.20 
( C )  38.61(42) 53.8(1.4) 86.0(1.7) 1 7 1 . 1 ( 2 . 3 )  577.7(13.7) 

L 30 40 40 60-80 100 

p' = 0.4 

,8 0.05 0.10 0.15 0.20 0.23 
( C )  23.82(42) 36.50(66) 64.28(63) 1 8 9 . 0 ( 6 . 1 )  615.9(14.0) 

L 40 40 60-80 100 100 

p' =0.5 

,8 0.10 0.15 0.20 0.23 0.25 
( C )  1 6 . 4 9 ( 1 4 )  26.48(36) 59.67(65) 1 5 4 . 9 ( 1 . 7 )  536.8(13.9) 

L 20 30 40 60 110 

p ' =  0.57735 

,8 0.20 0.23 0.25 0.26 0.265 
(C> 24.59(23) 49.43(28) 1 1 4 . 3 ( 1 . 9 )  261,2(5.1) 501.8(11.1) 

L 20 30 40 60 I10 

Table II. Triangular Lattice: Cluster Size vs. p' for ~ = 0 . ,  0.27465, 0.29 

,8=0 

p' 

(c> 
L 

0.40 0.30 0.20 0.15 0.10 
18.25(21) 38.92(34) 1 0 9 . 9 5 ( 5 6 )  220.0(2.3) 568.6(2.6) 

30 30 48-50 80 110 

8 = 0.27465 

p' 

(c> 
L 

0.70 0.67 0.64 
25.61 (21) 58.72(41) 185,0(2.6) 

20-40 40-60 60 

fl = 0.29 

p' 

<c> 
L 

0,73 0.70 0.67 0.65 
18.17(40) 37.99(35) 115.9(2.6) 328.8(4.7) 

20 30 60 60 
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critical value. However, we are diluting bonds, not sites; we do not know 
for sure if the clusters are marginally stable against the former process, 
hence the true value could be slightly positive rather than 0. In any case, 
the results (6 ')-(8 ')  and (10)-(12) together give some general picture of the 
shape of the critical curve p'(p) that is in agreement with our stability 
principle. 

It turns out that the exponent y is varying rapidly near the diagonal 
p = p' (in addition to the values obtained from fitting "vertically," i.e., at 
fixed p, and "horizontally," i.e., at fixed p', we know the exact value of the 
exponent along the diagonal, since it is equal to the exponent of the suscep- 
tibility, 1.75). This rapid change in 7 is accompanied by a fast change of the 
slope of p'(p). We do not know if there is in fact a singularity of the critical 
curve on the diagonal. 

This slope of the critical curve is the reason for our using "vertical" fits 
in one regime and "horizontal" ones elsewhere, since the true power 
behavior will be obscured if one is approaching the critical curve in a 
nearly tangential direction. 

2.2.  S q u a r e  L a t t i c e  

The square lattice is not self-matching and at small fl the mean size of 
the H ( + or - ) clusters is finite, whereas there is *-percolation of both the 
+ and - *-clusters. 

A priori we do not know if there is a value/~H </~c such that the mean 
size of the H clusters first diverges for/3 >/~H and not for/~ </~H. If one 
believes in a strong form of universality, however, the qualitative behavior 
of the phase diagram should be as on the T lattice, which would mean 
that there is an interval below /~c showing divergent mean size of the H 
( +  or - )  clusters. Our stability principle then requires that P'c(/~)> 0 for 
/? in the interval (/?H,/~c]. 

To find out if in fact/~H < / ~ ,  we determined the size of the H clusters 
at /~=0, 0.1, 0.2, 0.225, 0.25, 0.26 and fitted the data to a power law 
singularity. We obtained /?H = 0.42(2) with an exponent y=3.144. Since 
/~c = 0.4407, this means that by this method we are unable to decide the 
question without spending a lot more computer time. The measured values 
of the mean cluster size appear in Table III. 

Table III. Square Lattice: Cluster Size vs. 13 for p '=  0 (H clusters) 

0. 0.10 0.20 0.225 0.25 
(C) 58.4(1.0) 136.3(3.7) 443(14) 690(29) 941(35) 

L 62 62 126 190 254 

0.26 
1239(37) 

260 

822/69/1-2-5 
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Table IV. Square Lattice: Cluster Size vs. p' for p ' =  0.3, 0.41421 

p' =0.3 

/3 0.25 0.30 0.35 0.38 0.39 
(C) 33.95(58) 59.71(97) 143.4(3.1) 335.2(4.7) 511.2(13.0) 

L 30 60 60 100 110 

p'= 0.41421 

/3 0.30 0.35 0.40 0.42 0.425 
(C) 20.62(20) 37.85(50) 114.4(2.3) 315.0(4.7) 482.5(6.7) 

L 60 60 60 100 110 

So we proceeded as on the T lattice, measuring ( C )  for varying /~ 
("horizontal fit") at p ' = e x p ( - 2 / ~ c ) = 0 . 4 1 4 2  and p ' = 0 . 3  (the first value 
again to test the reliability of the fits). 

The result is 

/~c(0.4142) = 0.438(1 ), 7 =  1.335 (13) 

/3c(0.3 ) -- 0.426(4), 7 = 1.709 (14) 

The measured values of the mean cluster size are given in Table IV. As 
before, there is a systematic deviation from the exact value//c = 0.4407 in 
the fit (13), but the difference between the two values of/3 c is much larger 
and suggests strongly that p'c(/~)>0 for some /3</~c. 'By the general 
monotonicity argument mentioned in the beginning, this implies /~H <//c. 
So the data also confirm the general stability principle for the S lattice. 

3. C O N C L U S I O N S  

Our findings mean, among other things, that the phase diagram in the 
(p, p ' )  plane is qualitatively the same, independent of the lattice structure. 
Additional support for this kind of universality comes from the following: 
we measured the size of the H and FK clusters, denoted ( H )  and ( F K ) ,  
on both lattices right at the critical point and found that not only 

( H ) ( L ) = c L  2-"n (15) 

as well as 

( F K ) ( L ) = c L  2-" (16) 

with nearly the same values of rt (about 0.25) and qH (about 0.1) on both 
lattices, but that also the absolute numbers agree within numerical 
accuracy for the two lattices. 
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Table V. Comparison of the FK and H Clusters for the T and S Lattices 
at 13=1~c for Lattices of size L=10 ,  20, 40, 80 

T lattice 

L 10 20 40 80 
( H )  78.98(16) 290.0(1.6) 1079.7(6.7) 4097(22) 

( F K )  59.71(37) 199.6(2.3) 677.4(8.5) 2284(32) 

S lattice 

L 10 20 40 80 
( H )  80.09(37) 296.2(1.5) 1093.0(9.8) 4023(34) 

( F K )  62.07(37) 203.7(2.8) 677.7(10.2) 2283(64) 

W e  give the  a c t u a l  m e a s u r e d  n u m b e r s  in T a b l e  V. 
T o  s u m  up:  we have  f o u n d  on  b o t h  the  T a n d  S la t t ices  n u m e r i c a l  

ev idence  for  the  ex i s tence  of  a t w o - d i m e n s i o n a l  r eg ion  in the  (p ,  p ' )  p l a n e  
in which  the " d i l u t e d  H c lus te r s"  have  d ive rgen t  m e a n  size, yet  d o  n o t  
percolate2 In  p a r t i c u l a r ,  this  m e a n s  t ha t  on  the  S la t t ice ,  c o n t r a r y  to  s o m e  
expec t a t i ons ,  there  is a flr~ < tic such t h a t  ( H )  d iverges  for  fl > tiM. 
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